Симбиоз бактерий: как прожить с пользой. Польза и вред бактерий-симбионтов для живых организмов Симбиотическая ассоциация организмов

При взаимовыгодном эндосимбиозе микробные симбионты живут внутри клеток своих хозяев. Во многих ассоциациях микроорганизмы переходят к постоянному внутриклеточному существованию и передаются по наследству. В других ассоциациях микроорганизмы сохраняются внутри клеток хозяина некоторое время, а затем выходят, чтобы инфицировать следующую генерацию клеток–хозяев.

При мутуалистическом эктосимбиозе возможны ситуации: 1) когда симбионт микробного происхождения живет на внешней поверхности хозяина (фото- и нефотосинтезирующие бактерии) и 2) микроорганизмы обитают в полости тела своего хозяина.

Функции симбиоза

Среди бесчисленных типов симбиоза, возникающих в процессе эволюции, симбионты могут выполнять ряд функций:

1. Защита . Эндосимбионты, а также экзосимбионты, которые живут в полостях тела, защищены от неблагоприятных условий среды. Или нормальная микрофлора кишечника предохраняет от внедрения и развития в нем патогенных микроорганизмов.

2. Предоставление благоприятного положения . Чаще всего предоставляется партнеру в отношении снабжения питанием. Многие морские инфузории находят ся на поверхности тела ракообразных, где потоки веществ, создаваемые в результате дыхания и питания хозяина, обеспечивают им постоянное снабжение пищей.

3. Сигнальная функция . Это происходит например, в случае биолюминесценции. У определенных видов кальмаров (каракатицы) и некоторых рыб ее осуществляют светящиеся бактерии, живущие как эктосимбионты в особых органах хозяина. Излучение света этими животными служит приспособлением для распознавания, способствуя собиранию их в стаю, спариванию и привлечению добычи.

4. Питание. Это наиболее общая функция симбионтов. Косвенное – микориза (грибы увеличивают поглотительную способность корневой системы) и прямое – рубец. Целлюлоза, которая является главным компонентом растений, не перевариваются животными. Ее расщепление осуществляют симбиотические бактерии и простейшие, которые обитают в рубце. В данном случае пищей снабжаются оба симбионта.

Симбиоз микроорганизмов с высшими растениями

Ризосфера

Участки почвы, непосредственно окружающие корни растения вместе с поверхностью корней составляют ризосферу растения. В ризосфере растения количество бактерий превышает их число в окружающей почве в несколько сотен раз. Корни растений выделяют органические вещества, которые избирательно стимулируют рост бактерий с особыми типами питания. При этом, почвенные бактерии приносят растениям пользу, фиксируя молекулярный азот и переводя его в минеральные и органические соединения, обогащающие почву.

Микориза

Это симбиоз корней высших растений со многими видами почвенных грибов. Гриб получает от высшего растения углеводы, аминокислоты, и другие органические вещества, а растение из почвы посредством гриба – воду, минеральные вещества. Кроме того, микоризный гриб снабжает корневую систему зеленого растения витамином В 1 , влияющим на рост корневой системы. Микориза может быть наружной и внутренней. При наружной микоризе гифы гриба оплетают корни растений, образуя чехлы. Корневые волоски при этом отмирают. Наружная микориза характерна для многих деревьев (дуб, береза, ива). При внутренней микоризе гифы гриба проникают глубоко в ткани корня и внедряются в клетки корневой паренхимы, грибной чехол не образуется и корневые волоски не отмирают (яблоня, груша, земляника).

За немногими исключениями микоризы не является видоспецифичными. Данный гриб может быть связан с любым из нескольких растений хозяев, а данное растение в большинстве случаев вступает в ассоциацию с любым из целого ряда (40) почвенных грибов.

Клубеньковые бактерии и бобовые растения

Плодородие сельскохозяйственных угодий поддерживается путем севооборота. Если один и тот же участок почвы засевать из года в год только злаками, то его продуктивность начинает снижаться. Однако, если посеять на этом участке бобовое растение (клевер, люцерну), плодородие восстанавливается. Эти растения увеличивают азотное питание почвы. Фиксация азота происходит эндогенными партнерами бобовых – клубеньковыми бактериями. Они живут в особых выростах на корнях, называемых клубеньками. Эти бактерии относятся к роду, Rhizobium. При свободном существовании в почве эти микроорганизмы растут как сапрофиты за счет органических соединений. Заражение растения происходит только через молодые корневые волоски, а затем происходит разрастание паренхимной ткани корня, вызванное проникновением бактерий. Бактерии, проникнув в корень первоначально питаются за счет растения –хозяина. В дальнейшем они начинают вырабатывать органические вещества, фиксируя молекулярный азот воздуха. В конце периода роста растения бактерии отмирают, а вещества их клеток поглощает растение хозяин.

В процессе роста бактерии используют питательные вещества, синтезируемые хозяином. Растение получает выгоду от такого симбиоза, благодаря фиксации бактериями атмосферного азота.

Симбиоз между микроорганизмами и многоклеточными

Рубец жвачных животных

Ниболее ярким примером является симбиоз микроорганизмов и жвачных травоядных млекопитающих (коровы, овцы, козы, верблюды). Жвачные животные не могут синтезировать целлюлазы – ферменты, ответственные за расщепление целлюлозы, основы пищи животных. Симбиоз с микроорганизмами позволяет им это делать. Пищеварительный тракт жвачных животных состоит из 4-х последовательных желудков (камер). Два первых называют рубцом – это обширные камеры, заполненные микроорганизмами и простейшими. В результате их биохимической активности, целлюлоза и другие сложные углеводы расщепляются на простые. Образующиеся жирные кислоты всасываются через стенки рубца, поступают в кровоток и, циркулируя с кровью, достигают различных тканей тела.

У кроликов такие бактерии живут в слепой кишке и червеобразном отростке.

Человек

Микрофлора кишечника. В кишечнике человека живут многие бактерии, при этом некоторые из них (Е.со11), синтезируют витамины группы Б и К.

Некоторые бактерии, живущие на коже человека, предохраняют его от заражения патогенными организмами.

Слово «симбионт» происходит от древнегреческого «совместная жизнь, сожительство» и обозначает различные живые организмы, поддерживающие существование друг друга. Процесс тесного и длительного сожительства разных видов живых организмов называют симбиозом. Такие взаимоотношения между симбионтами успешны в том случае, если они приносят пользу всем участникам процесса и повышают их шансы на выживание. Яркий пример – бактерии-симбионты, живущие в кишечнике человека, без которых процесс пищеварения, а, следовательно, и наша жизнь были бы невозможны.

  • двух животных (бегемот и птичка, которая чистит ему зубы);
  • растений и насекомых (цветы, опыляемые только одним видом насекомых);
  • микроорганизмов и растений (клубеньковые бактерии, участвующие в процессе получения пищи бобовыми);
  • человека и бактерий (микроорганизмы, которые обитают в нашем кишечнике, помогают выжить нам и радуются жизни сами);
  • даже отдельных клеток друг с другом (симбиоз доядерных клеток-прокариотов породил полноценную клетку-эукариота с четко оформленным ядром, что положило начало процессу эволюции на нашей планете).

А есть еще лишайники как результат симбиоза гриба и водоросли, которые выживают там, где по отдельности ни грибы, ни водоросли жить не смогут. Есть сосуществование краба и актинии, когда первый является средством передвижения, а вторая – оборонительным оружием. И таких примеров не счесть.

Рассмотрим два примера симбиоза микроорганизмов с человеком и растениями – бактерии-симбионты человека и клубеньковые бактерии, участвующие в процессе питания бобовых.

Макроорганизм + микроорганизм = человек

Бактерии-симбионты живут в нашем кишечнике, на слизистых, на коже и составляют так называемую нормальную микрофлору. Наши родные микроорганизмы:

  1. Дают защиту всему организму, убивая или лишая пищи «пришлые» бактерии. Они не дают возможности расселиться на коже или слизистых опасным микробам или вирусам, пришедшим извне, тем самым создавая иммунную систему организма.
  2. Участвуют в пищеварении. Бактерии, живущие в кишечнике человека, вырабатывают пищеварительные ферменты, без которых невозможно усвоение некоторых видов пищи.

В формировании нормальной микрофлоры человека принимают участие около 500 видов различных бактерий. Так, наличие в организме человека кишечной палочки (в определенных количествах) – непременное условие для переваривания лактозы. В свою очередь лактобактерии перерабатывают полученную лактозу и другие углеводы в молочную кислоту, участвуя в процессе получения энергии.

Где и чем живут наши маленькие друзья?

Бактерии есть практически по всей длине желудочно-кишечного тракта, начиная от ротовой полости до прямой кишки. Но самые важные обитают именно в кишечнике. Здесь они вырабатывают ферменты и витамины, без которых процесс пищеварения попросту невозможен.

На каждом участке кишечника живут именно те микроорганизмы, которые приспособлены к определенным условиям обитания и содержанию питательных веществ. Например, в слепой кишке самой многочисленной группой являются бактерии, расщепляющие целлюлозу, что делает возможным переработку клетчатки.

Бактериям тонкого кишечника приходится выживать в довольно жестких условиях. Именно здесь находятся агрессивные вещества, смертельные для многих микроорганизмов. Например, соляная кислота, необходимая для пищеварения, убивает значительное количество микробов. Только несколько видов бактерий и дрожжей способны выжить в такой среде.

Кроме того, именно в тонком кишечнике процесс поглощения питательных веществ идет полным ходом. Это значит, что бактериям приходится сражаться за пищу с самим организмом. А еще сюда попадают не до конца обработанные вещества, не всегда пригодные для питания бактерий.

Тонкий кишечник связан с кровеносной и лимфатической системами, переносящими полученные питательные вещества. А нервная система по сигналу тонкого кишечника регулирует состав и количество гормонов, необходимых организму. То есть тонкий кишечник, благодаря своим симбионтам, является энергетической станцией и поставщиком питательных веществ.

В толстом кишечнике бактериям живется значительно привольней, поэтому их количество и видовое разнообразие гораздо больше. В толстый кишечник организм отправляет непереваренные остатки пищи и другие отходы (осколки до размеров молекул) для дальнейшего вывода наружу.

Враги наших друзей

Антибиотики – относительно недавнее изобретение человечества. Сложно подсчитать, сколько жизней было спасено благодаря этому открытию. Однако, как известно, за все нужно платить. Антибиотики уничтожают все бактерии, не делая различий на хороших и плохих.

Именно поэтому после приема антибиотиков микрофлора кишечника выглядит весьма печально. Это моментально сказывается не только на нашем пищеварении, но и сильно снижает иммунитет. То есть, получается, опасность подцепить следующее заболевание становится больше после приема лекарств, предназначенных защитить наше здоровье.

Ученые пытаются разрушить этот замкнутый круг, разрабатывая все новые, узконаправленные, препараты. Но долгие годы широкого использования антибиотиков привели к тому, что микрофлора человека становится все более слабой. А отсутствие или недостаточное количество бактерий-симбионтов влечет за собой целый букет хронических заболеваний: диабет, рак, ожирение и т.д.

Симбионты в растительном царстве

Растения в своем стремлении выжить тоже не стесняются использовать симбионты. Например, хорошо известный лишайник, по сути, не является отдельным растением. Это симбиотическая система зеленых водорослей и грибов.

Как известно, водоросли не могут выжить без воды, а грибы не способны самостоятельно синтезировать питательные вещества (они используют то, что произвели другие микроорганизмы). Но эти недостатки взаимно уничтожаются в симбиотической группе. Водоросли с помощью фотосинтеза создают питательные вещества для грибов, а взамен получают комфортную среду обитания: необходимую влажность, кислотность почвы, защиту от ультрафиолета. В результате лишайники умудряются не просто выживать, но весьма уверенно чувствовать себя в довольно суровых условиях, где у них нет конкурентов за место под солнцем.

Еще одним примером симбиоза служат орхидеи, в корневой системе которых живут грибы и микроорганизмы. В этом тройственном союзе бактерии отвечают за тесную взаимосвязь растения-хозяина и гриба-симбионта. Самое поразительное, что не только грибы и микроорганизмы не могут существовать без растения, но и орхидея погибает, если уничтожить ее симбионтов.

Но самым, пожалуй, ярким примером растительной симбиотической системы являются клубеньковые бактерии в союзе с растениями семейства бобовых.

Как вырастить хороший урожай бобовых

В воздухе, которым мы дышим, есть азот (аж 78% от общего объема). Этот химический элемент в обязательном порядке входит в состав белков и нуклеиновых кислот, а значит, жизненно необходим все живым организмам на Земле.

Человек и животные получают азот вместе с пищей, в основном из белков животного и растительного происхождения. Но откуда же берут азот растения?

Получать азот напрямую из атмосферного воздуха самостоятельно растения не умеют. В почве тоже есть азот, но, во-первых, его очень мало, во-вторых, значительная его часть содержится в органических соединениях, усваивать которые растения не в состоянии.

И вот здесь вступают в игру азотфиксирующие бактерии. Они умеют превращать органические соединения, содержащие азот, в минеральные (нитраты), доступные для питания растений.

Отдельное место в ряду азотфиксирующих бактерий занимают так называемые клубеньковые. Эти микроорганизмы-симбионты образуют клубеньки на корнях бобовых растений (клевера, люпина, гороха, вики). Клубеньковые бактерии связывают свободный атмосферный азот и доставляют его прямо к столу своего растительного хозяина.

Таким образом, с помощью клубеньков-симбионтов растения получают возможность получать азот, а микроорганизмы, в свою очередь, берут от растений питательные вещества (продукты углеводного обмена и минеральные соли) для собственного роста и развития.

Для успешного развития системы симбионтов (растение + микроорганизм) необходимы определенные условия:

  • температура;
  • влажность;
  • реакция почвы;
  • штамм бактерий.

В природных условиях встречаются клубеньковые бактерии различных видов, и не все они достаточно эффективны. Поэтому в сельском хозяйстве используют выведенные штаммы микроорганизмов, инфицируя ими бобовые растения, что приводит к увеличению урожая.

Однако в случае с бобовыми симбиоз – вынужденная необходимость. Если в почве будет достаточно азота (например, азотные удобрения), то клубеньковые бактерии потеряют для хозяина свою значимость, и их колонии будут разрушены самим растением.

Итак, симбиоз – вещь важная, нужная и иногда жизненно необходимая. Симбионтные системы есть у высших животных, растений, грибов, бактерий, водорослей… Словом, практически везде. И мы не смогли бы не то что выжить, но даже появиться на свет, не создай природа такого мощного орудия для выживания, как система симбионтов.

Может распространять только один, определённый вид насекомых . Такие отношения успешны всегда, когда они увеличивают шансы обоих партнёров на выживание. Осуществляемые в ходе симбиоза действия или производимые вещества являются для партнёров существенными и незаменимыми. В обобщённом понимании такой симбиоз - промежуточное звено между взаимодействием и слиянием.

Разновидность симбиоза - эндосимбиоз (см.Симбиогенез), когда один из партнёров живёт внутри клетки другого.

Наука о симбиозе - симбиология.

Мутуализм

Взаимовыгодные связи могут формироваться на основе поведенческих реакций, например, как у птиц, совмещающих собственное питание с распространением семян. Иногда виды-мутуалисты вступают в тесное физическое взаимодействие, как при образовании микоризы (грибокорня) между грибами и растениями.

Тесный контакт видов при мутуализме вызывает их совместную эволюцию. Характерным примером служат взаимные приспособления, которые сформировались у цветковых растений и их опылителей. Часто виды-мутуалисты совместно расселяются.

Комменсализм

В зависимости от характера взаимоотношений видов-комменсалов выделяют три вида:

  • комменсал ограничивается использованием пищи организма другого вида (например, в извивах раковины рака-отшельника обитает кольчатый червь из рода Nereis, питающийся остатками пищи рака);
  • комменсал прикрепляется к организму другого вида, который становится «хозяином» (например, рыба-прилипала плавником-присоской прикрепляется к коже акул и др. крупных рыб, передвигаясь с их помощью);
  • комменсал селится во внутренних органах хозяина (например, некоторые жгутиконосцы обитают в кишечнике млекопитающих).

Примером комменсализма могут служить бобовые (например, клевер) и злаки, совместно произрастающие на почвах, бедных доступными соединениями азота, но богатых соединениями калия и фосфора. При этом если злак не подавляет бобовое, то оно в свою очередь обеспечивает его дополнительным количеством доступного азота. Но подобные взаимоотношения могут продолжаться только до тех пор, пока почва бедна азотом и злаки не могут сильно разрастаться. Если же в результате роста бобовых и активной работы азотфиксирующих клубеньковых бактерий в почве накапливается достаточное количество доступных для растений соединений азота, этот тип взаимоотношений сменяется конкуренцией. Результатом её, как правило, является полное или частичное вытеснение менее конкурентоспособных бобовых из фитоценоза. Другой вариант комменсализма: односторонняя помощь растения-«няни» другому растению. Так, береза или ольха могут быть няней для ели: они защищают молодые ели от прямых солнечных лучей, без чего на открытом месте ель вырасти не может, а также защищают всходы молодых елочек от выжимания их из почвы морозом. Такой тип взаимоотношений характерен лишь для молодых растений ели. Как правило, при достижении елью определенного возраста она начинает вести себя как очень сильный конкурент и подавляет своих нянь.
В таких же отношениях состоят кустарники из семейств губоцветных и сложноцветных и южно-американские кактусы. Обладая особым типом фотосинтеза (САМ-метаболизм), который происходит днем при закрытых устьицах, молодые кактусы сильно перегреваются и страдают от прямого солнечного света. Поэтому они могут развиваться только в тени под защитой засухоустойчивых кустарников. Имеются также многочисленные примеры симбиоза, выгодного для одного вида и не приносящего другому виду ни пользы, ни вреда. Например, кишечник человека населяет множество видов бактерий, присутствие которых безвредно для человека. Аналогично, растения, называемые бромелиадами (к которым относится, например, ананас), обитают на ветвях деревьев, но получают питательные вещества из воздуха. Эти растения используют дерево для опоры, не лишая его питательных веществ. Растения питательные вещества делают сами, а не получают из воздуха.

Комменсализм способ совместного существования двух разных видов живых организмов, при которых одна популяция извлекает пользу от взаимоотношения, а другая не получает ни пользы, ни вреда (например, чешуйница обыкновенная и человек).

Симбиоз и эволюция

Помимо ядра в эукариотических клетках имеется множество изолированных внутренних структур, называемых органеллами. Митохондрии, органеллы одного типа, генерируют энергию и поэтому считаются силовыми станциями клетки. Митохондрии, как и ядро, окружены двухслойной мембраной и содержат ДНК. На этом основании предложена теория возникновения эукариотических клеток в результате симбиоза. Одна из клеток поглотила другую, а после оказалось, что вместе они справляются лучше, чем по отдельности. Такова эндосимбиотическая теория эволюции.
Эта теория легко объясняет существование двухслойной мембраны. Внутренний слой ведет происхождение от мембраны поглощенной клетки, а наружный является частью мембраны поглотившей клетки, обернувшейся вокруг клетки-пришельца. Также хорошо понятно наличие митохондриальной ДНК - это не что иное, как остатки ДНК клетки-пришельца. Итак, многие (возможно, все) органеллы эукариотической клетки в начале своего существования были отдельными организмами, и около миллиарда лет тому назад объединили свои усилия для создания клеток нового типа. Следовательно, наши собственные тела - иллюстрация одного из древнейших партнерских отношений в природе.

Следует также помнить, что симбиоз - это не только сосуществование разных видов живых организмов. На заре эволюции симбиоз был тем двигателем, который свел одноклеточные организмы одного вида в один многоклеточный организм (колонию) и стал основой разнообразия современной флоры и фауны.

Примеры симбиозов

  • Эндофиты живут внутри растения, питаются его веществами, выделяя при этом соединения, способствующие росту организма-хозяина.
  • Транспортировка семян растений животными , которые поедают плоды и выделяют непереваренные семена вместе с пометом в другом месте.

Насекомые/растений

Грибы/водоросли

  • Лишайник состоит из гриба и водоросли . Водоросль в результате фотосинтеза производит органические вещества (углеводы), использующиеся грибом, а тот поставляет воду и минеральные вещества.

Животные/водоросли

Грибы/растения

  • Многие грибы получают от дерева питательные вещества и снабжают его минеральными веществами (микориза).

Насекомые/насекомые

  • Некоторые муравьи защищают («пасут») тлю и получают от неё взамен выделения, содержащие сахар .

См. также

Примечания

Литература

  • Маргелис Л. Роль симбиоза в эволюции клетки. - М: Мир, 1983. - 354 с.
  • Douglas A.E Symbiotic interaction. - Oxford Univer. Press: Oxford:Y-N, Toronto, 1994. - 148 p.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Симбиоз - (от греч. symbiosis сожительство), тесное сожительство организмов двух или более видов, которое, как правило, стало необходимым и полезным для обоих партнеров (симбионтов). Симбиоз у морских животных открыл К. Мёбиус (1877). По степени соединения … Экологический словарь

симбиоз - а, м. symbiose f. <гр. symbiosis. биол. Сожительство организмов разных видов, обычно приносящее им взаимную пользу, напр. гриб и водоросль, образующие вместе лишайник. СИС 1954. Симбиоз рака отшельника и актинии. БАС 1. Виноградов выполнил… … Исторический словарь галлицизмов русского языка

Некоторые растения вступают в тесные симбиотические отношения с микроорганизмами почвы. Внедряясь в корневую систему или даже наземные ткани растений, они питаются там органическими соединениями, синтезированными растением-хозяином. В свою очередь, растения получают от микробов-симбионтов ряд необходимых им веществ. Характер последних в отдельных случаях может варьировать.

Выше был рассмотрен симбиоз бобовых растений с азотфиксирующими бактериями рода Rhizobium и растений других семейств с актипомицетами рода Frankia. Установлено также, что корневая система подавляющего большинства наземных растений образует с грибами, так называемую микоризу, которая, несомненно, имеет симбиотический характер.

Крупной вехой в развитии учения об отношениях почвенных грибов и высших растений стала работа русского ученого Ф. М. Каменского, изучавшего в конце прошлого века анатомическое строение корней подъельника (Monotropa hypopitys). Он установил, что корни этого растения, особенно их окончания, покрыты толстым слоем грибного мицелия. Каменский сделал заключение о возможности симбиотических взаимоотношений между грибом и корневой системой подъельника.

В конце прошлого века русский ученый В. К. Варлих нашел, что корни орхидей пронизаны мицелием гриба, причем эти растения без гриба - симбионта не растут.

Последующие работы, особенно немецкого исследователя Б. Франка, позволили установить наличие грибного мицелия на активной части корней лиственных и хвойных древесных пород. Сложный комплекс, образованный корнями растений и грибом, Франк назвал микоризой, что в буквальном переводе означает грибной корень.

К настоящему времени установлено, что наличие и отсутствие микориз, а также особенности их строения зависят преимущественно от систематического положения растения-хозяина. У высших споровых растений не имеют микориз спорофиты плаунов и хвощей.

Голосеменные все микотрофны. Среди покрытосеменных не имеют микориз осоковые, ситниковые, капустные (крестоцветные), маковые, гвоздичные, большинство гречишных и маревые. Бобовые растения, находящиеся в симбиозе с бактериями, имеют микоризу. Таким образом, микоризы широко распространены среди самых разнообразных групп растений, как семенных, так и архегониальных. Водные растения не имеют микоризы.

Внешний вид и внутренняя структура микориз могут сильно варьировать. Различают эктотрофную, эндотрофную и переходную (эктоэндотрофную) микоризы. Между этими типами микориз могут быть всевозможные варианты. Подробное описание типов микориз сделано И. А. Селивановым.

Самый распространенный - эндотрофный тип микоризы. Он свойствен травянистой растительности, многим деревьям и курстарникам. При формировании эндотрофной микоризы мицелий гриба распространяется не только между клетками коровой паренхимы, но и внедряется в них (рис. 75). Клетки коровой паренхимы остаются жизнеспособными и переваривают внедрившийся в них мицелий. Особенно заметен этот процесс в клетках, расположенных более глубоко. Он напоминает явление фагоцитоза. Под влиянием содержимого клетки внутриклеточный мицелий иногда образует клубки (пелотоны), а нередко древовидные разветвления (арбускулы) или вздутые окончания (спорангиолы и везикулы).

Рис. 75. Эндотрофная микориза у пшеницы:

1 - паренхимные клетки со скоплением гриба (в некоторых клетках мицелий гриба растворяется); 2 - эндодерма: 3 - эпидермис; а - клетки паренхимы с гифами гриба; б - образование везикул; в - образование арбускул.

Не исключена возможность, что спорангиолы в некоторых случаях представляют собой лизирующиеся арбускулы.

У корней с эндотрофной микоризой часть мицелиальных окончаний выходит в почву. Такие гифы называются эмиссионными.

Они не так густы и не образуют грибного чехла, как при эктотрофной микоризе. Поэтому корневые волоски у растений с эндотрофной микоризой обычно сохраняются.

Довольно распространена эктотрофная микориза. Она свойственна главным образом хвойным растениям и «сережкоцветным покрытосеменным», реже встречается у других систематических групп растений.

В этом случае корень окутывается достаточно плотным грибным чехлом, от которого во все стороны распространяется густая сеть гиф. Эктотрофная микориза может различаться по цвету мицелиального чехла, она бывает беловатой, серой, розовой, бурой и других тонов. Различают микоризу с войлочной поверхностью, волосистую или щетинистую и гладкую (рис. 76).

При эктотрофной микоризе грибные гифы проникают в корень на небольшую глубину, ограничиваясь преимущественно межклетниками эктодермы. Здесь гифы, переплетаясь, образуют густую сеть, названную гартиговской (по имени обнаружившего ее ученого Р. Гартига). При эктотрофной микоризе плотный грибной чехол часто окутывает корни так, что корневые волоски исчезают, а вода и питательные вещества из почвы поглощаются мицелием гриба.

Наружный слой клеток коры корня подвергается более или менее полному разрушению. Под грибным чехлом находится слой клеток с большим количеством дубильных веществ. Главные окончания корней (ростовые окончания) иммунны к грибу и не образуют микоризы. Рост их в длину продолжается все лето, что дает возможность охватить корнями больший объем почвы.

Рис. 76. Микориза на корнях древесных растений:

А - гладкая микориза на корнях сосны (по Б. Бьеркману);

Б- щетинистая микориза на корнях дуба (по А. Хатчу).

Эктотрофная микориза - однолетнее образование, каждый год она возобновляется. Микориза переходного типа совмещает в себе черты, свойственные эктотрофной и эндотрофной микоризам.

Иногда наблюдается перитрофная микориза. В данном случае грибы не вступают с растениями в тесную связь. Они поселяются в ризосфере, окутывая корень.

По отношению к грибам - микоризообразователям высшие растения могут быть разделены на следующие группы.

1. Облигатно-микотрофные растения, не развивающиеся без гриба (подъельник, орхидея).

2. Растения, улучшающие свой рост и развитие при наличии микоризы. К этой группе относятся многочисленные древесные и кустарниковые породы (дуб, граб, хвойные и т. д.), в нее входят и травянистые растения, в том числе сельскохозяйственные культуры.

3. Растения, развивающиеся без микоризы, - водные и небольшая группа наземных.

Грибы-микоризообразователи древесной и особенно травянистой растительности изучены еще недостаточно. Установлено, однако, что эндомикоризные грибы относятся к семейству Endagonaceae (виды Glomus и Sclerocystis).

Микоризу у одного и того же растения могут образовать разные грибы, способные к симбиозу с ним. С другой стороны, один и тот же гриб способен давать микоризу с различными растениями. Впрочем, у ряда грибов проявляется известная специфичность. Этим объясняется очень характерный состав шляпочных грибов в различных по составу древесных пород лесах.

Условия, способствующие хорошему росту растений, как правило, улучшают формирование у них микоризы. Благоприятное влияние на образование микоризы оказывают органические и большинство минеральных удобрений. Внесение азотных удобрений подавляет ее формирование. Это объясняется, вероятно, тем, что наличие в растении значительных количеств азота способствует переработке углеводов в белки, вследствие чего ухудшается питание гриба-симбионта.

Исследование распространения микориз в различных ландшафтно - географических зонах показывает, что в тундровых и пустынных фитоценозах симбиотические связи высших растений с грибами заметно ослабевают. В лесной и степной зонах, по данным И. А. Селиванова, микотрофные виды растений преобладают над немикотрофными.

Остановимся на значении грибов - микоризообразователей для растений. Грибной мицелий, окружающий корень, увеличивает его рабочую поверхность. Поэтому корневой системой растения лучше поглощаются из почвы питательные вещества. Радиоактивные соединения фосфора, например, быстрее ассимилируются корнями растений при наличии у них микоризы. Роль микоризных грибов в фосфорном питании растений подробно изучена Г. С. Муромцевым с сотрудниками. Показано, что фосфор, в основном в форме полифосфатов, со значительной скоростью транспортируется гифами грибов в ткани растений. Гифы микоризных грибов поглощают фосфор из почвы за пределами обедненной этим элементом прикорневой зоны. Они также способны использовать значительно более низкие концентрации фосфора из почвенного раствора, чем корни растений. Очевидно, микоризные грибы могут ассимилировать труднодоступные растениям фосфаты алюминия и железа.

Растения с микоризой более легко поглощают влагу при ее дефиците в почве и поэтому легче переносят засуху. Многие органические соединения могут минерализоваться грибами - микоризообразователями, в результате чего улучшается питание растения. Некоторые грибы-симбионты разрушают гумус. Грибы - микоризообразователи продуцируют биологически активные вещества и благодаря этому могут содействовать росту растений.

Подавляющее большинство грибов - микоризообразователей не могут фиксировать молекулярный азот и как накопители азота никакого значения не имеют. Исключением, по-видимому, являются гриб Phoma - симбионт вереска и некоторые симбионты сосны.

Образование микориз возможно, лишь, если в почве имеются соответствующие грибы. Обычно в микробном ценозе почвы они есть. Однако в некоторых случаях, например при степном лесоразведении и рекультивации земель, когда в почве отсутствуют грибы- микоризообразователи древесных растений, целесообразно их внесение (см. главу 21).

Изучение взаимодействия бактерий с другими организмами – один из основных разделов микробиологии. Благодаря получению и освоению знаний об этом взаимодействии человек может определить границы влияния бактерий на окружающую среду, соответственно, и на безопасность человеческого сообщества. Симбиоз, характерный для клубеньковых бактерий, разнообразные бактериальные эндосимбиозы и экзосимбиозы – все эти процессы являются неотъемлемой частью окружающего человека органического мира и принципиально влияют на состояние объектов неорганической природы.

Микробиология дает несколько классификаций бактериальных симбиозов:

Отдельным порядком стоит комменсализм. Это такая связь между бактерией и другим организмом, при которой один из участников получает выгоду, а другой безразличен к установленной связи и к ее продуктам.

Совместное существование растений и бактерий представлено практически всеми видами симбиозов. Один из самых распространенных – факультативное сожительство азотфиксирующих микроорганизмов и бобовых растений.

Представители семейства азотфиксирующих бактерий Rhizobiaceae образуют на корнях бобовых растений так называемые корневые клубеньки, в которых атмосферный азот преобразуется в органические азотсодержащие соединения. Благодаря деятельности азотфиксирующих микроорганизмов ризосфера (почва вокруг корней бобовых растений) насыщается азотсодержащей органикой. Кроме того, сами бобовые растения (например, горох) потребляют продукты жизнедеятельности азотфиксирующих бактерий.

Вследствие высокого содержания органического азота в бобовых, горох, фасоль и другие продукты этой группы рекомендуются для употребления при заболеваниях кишечника и для профилактики онкологических заболеваний системы пищеварения.

Горох, богатый растительным белком, является незаменимым диетическим продуктом в тех случаях, когда пациентам не рекомендуется употреблять в пищу продукты, содержащие белок животного происхождения.Также горох улучшает обмен веществ, нормализует уровень сахара в крови, улучшает работу почек и печени.

Изучив механизм взаимодействия клубеньковых бактерий, человек определил природу полезных свойств гороха и других бобовых, и сегодня все полезные продукты данного симбиоза могут быть произведены синтетическим путем в фармацевтических и промышленных лабораториях.

Взаимодействие с человеком

Человек постоянно живет в содружестве с многочисленным бактериальным сообществом, представленным нескольким десятком основных семейств. Отсутствуют микробы только в крови и лимфе. Все остальные органы и ткани, так или иначе, вступают в контакт либо с самими бактериями, либо с продуктами их жизнедеятельности.

Желудочно-кишечный тракт

ЖКТ населен симбионтами семейства Энтеробактерии (Enterobacteriaceae). Это самое многочисленное сообщество, которое включает в себя роды кишечных патогенных и условно патогенных микроорганизмов. Также в ЖКТ имеется большое количество представителей семейства Лактобацилл (Lactobacillus) – эти микроорганизмы создают кислотную среду, которая подавляет деятельность бактериальных и вирусных патогенов; также лактобактерии очищают кишечник от гнили.

Кожные покровы

Кожа человека населена микроорганизмами в не меньшей степени, нежели ЖКТ. На коже присутствуют стафилококки эпидермидис, коринеформные бактерии, протеи, пропионибактерии, псевдомонады, кишечные микробы и другие.

Бактерии на коже человека

Активность микробов, которые населяют кожу, зависит от наличия многих подавляющих факторов, а также факторов, которые стимулируют развитие благоприятной среды для роста определенного вида бактерий. Как только такая среда создается, сразу в этом бактериальном сообществе начинает преобладать определенная бактериальная форма, что чаще всего сопровождается инфицированием кожных покровов. При нормальных условиях, когда одна группа сдерживает другую, подобное взаимодействие является естественным биологическим щитом.

Ротовая полость

Во рту также установлено наличие бактериального симбиоза, который регулирует внутреннюю среду ротовой полости и не дает возможности активизироваться патогенной микрофлоре, тем самым защищая ткани самой ротовой полости и верхних дыхательных путей от инфекционных заражений.

Такое взаимодействие и фактическая работа бактериального сообщества по защите человека от патогенов являются универсальным саморегулирующим природным механизмом, который очень аккуратно и оперативно реагирует на все изменения внутри самого организма и в окружающей среде. Поддержание этой естественной защиты является одним из основных аспектов охраны здоровья.

Симбиоз грибов и синезеленых водорослей

Одними из самых ярких симбиозов бактерий и грибов являются примеры сожительства синезеленых водорослей (цианобактерий) и грибов. Такой симбиоз имеет форму хорошо известного лишайника.

Тело гриба является защитным корпусом для бактериального сообщества синезеленых водорослей. Оно обеспечивает защиту от высыхания и осуществляет регулярную поставку воды к бактериальным клеткам, а сами водоросли, которые являются фотосинтезирующими организмами, обеспечивают гриб органическими веществами, необходимыми ему для питания.