Виды излучения Источники света естественныеискусственные. Презентация на тему виды излучений


Свет - это электромагнитные волны, которые излучаются ускоренно движущимися зарядами, входящими в состав атома. Для того, чтобы атом начал излучать, его необходимо «возбудить», то есть сообщить ему энергию. Виды излучения: 1. Тепловое (t 0 > C) 2. Люминесцентное (холодное свечение) электролюминесценция катодолюминесценция хемилюминесценция фотолюминесценция 800 0 "> 800 0 C) 2. Люминесцентное (холодное свечение) электролюминесценция катодолюминесценция хемилюминесценция фотолюминесценция"> 800 0 " title="+ Свет - это электромагнитные волны, которые излучаются ускоренно движущимися зарядами, входящими в состав атома. Для того, чтобы атом начал излучать, его необходимо «возбудить», то есть сообщить ему энергию. Виды излучения: 1. Тепловое (t 0 > 800 0 "> title="+ Свет - это электромагнитные волны, которые излучаются ускоренно движущимися зарядами, входящими в состав атома. Для того, чтобы атом начал излучать, его необходимо «возбудить», то есть сообщить ему энергию. Виды излучения: 1. Тепловое (t 0 > 800 0 ">























Тепловидение - получение видимого изображения объектов по их инфракрасному излучению. Тепловизор в строительстве: контроль контактов в соединениях; дефекты изоляции; контроль окон (утечки воздуха и тепла); контроль состояния труб и радиаторов. Термография – обнаружение заболевания на самых ранних стадиях.








3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече" title="УФ излучение – электромагнитные волны с длиной волны меньше длины волны фиолетовых лучей. Источники: Солнце; тело с t > 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече" class="link_thumb"> 18 УФ излучение – электромагнитные волны с длиной волны меньше длины волны фиолетовых лучей. Источники: Солнце; тело с t > C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свечение люминофоров. 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече"> 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свечение люминофоров."> 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече" title="УФ излучение – электромагнитные волны с длиной волны меньше длины волны фиолетовых лучей. Источники: Солнце; тело с t > 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече"> title="УФ излучение – электромагнитные волны с длиной волны меньше длины волны фиолетовых лучей. Источники: Солнце; тело с t > 3000 0 C; кварцевые лампы. Свойства: высокая химическая активность; биологическое действие; бактерицидное действие; вызывают свече">


Рентгеновские лучи Вопросы: 1.Определение рентгеновских лучей. 2.Условие возникновения рентгеновских лучей. 3.Свойства рентгеновских лучей. 4.Устно: 1 В: открытие рентгеновских лучей. 2 В: доказательство электромагнитной природы рентгеновских лучей. 3 В: получение рентгеновских лучей. 4 В: применение рентгеновских лучей.


Рентгеновские лучи – электромагнитные волны с длиной волны меньше длины волны УФ лучей. Условие возникновения: возникают при торможении быстрых электронов. Свойства: большая проникающая способность; химическая активность; вызывают ионизацию воздуха; вызывают свечение люминофоров.







Cлайд 1

Виды излучений Источники света Учитель физики Трифоева Наталия Борисовна Школа № 489 Московского р-на Санкт-Петербурга

Cлайд 2

Источник света должен потреблять энергию Свет – это электромагнитные волны с длиной волны4×10-7-8×10-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов, из которых состоит вещество. Внутри атома нет света. Атомы рождают свет только после их возбуждения. Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Cлайд 3

Тепловое излучение Тепловое излучение – это наиболее простой и распространенный вид излучения, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет. Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь около 12% всей энергии, выделяемой в нити лампы электрическим током, преобразуется в энергию света. Наконец, тепловым источником света является пламя. Крупинки сажи (не успевшие сгореть частицы топлива) раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Cлайд 4

Электролюминесценция Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают неупругие соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция. Северное сияние есть проявление электролюминесценции. Потоки заряженных частиц, испускаемых Солнцем, захватываются магнитным полем Земли. Они возбуждают у магнитных полюсов Земли атомы верхних слоев атмосферы, благодаря чему эти слои светятся. Также, электролюминесценция используется в трубках для рекламных надписей.

Cлайд 5

Катодолюминесценция Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Cлайд 6

Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемилюминесценцией. Почти каждый из вас, вероятно, знаком с ним. Летом в лесу можно ночью увидеть насекомое светлячка. На теле у него «горит» маленький зеленый «фонарик». Вы не обожжете пальцев, поймав светлячка. Светящееся пятнышко на его спинке имеет почти ту же температуру, что и окружающий воздух. Свойством светиться обладают и другие живые организмы: бактерии, насекомые, многие рыбы, обитающие на большой глубине. Часто светятся в темноте кусочки гниющего дерева.

Cлайд 7

Фотолюминесценция Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), и после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения. Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеином (органический краситель) световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено-желтым светом, т. е. светом большей длины волны, чем у фиолетового света. Явление фотолюминесценции широко используется в лампах дневного света. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

ГОКУ АО «Общеобразовательная школа при учреждениях исполнения наказания»

ВИДЫ ИЗЛУЧЕНИЙ.

ИСТОЧНИКИ СВЕТА.

Презентация по физике

Подготовила учитель физики- Г. Ф. Полещук


Свет – это электромагнитные волны с длиной 4·10¯⁷ - 8∙10⁻⁷м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти частицы входят в состав атомов из которых состоит вещество. Для того, чтобы атом начал излучать, ему необходимо передать определённое количество энергии. При излучении атом теряет её. Для непрерывного свечения необходим приток энергии извне.


ВИДЫ ИЗЛУЧЕНИЯ

* ТЕПЛОВОЕ ИЗЛУЧЕНИЕ

* КАТОДОЛЮМИНЕСЦЕНЦИЯ

* ХЕМИЛЮМИНЕСЦЕНЦИЯ

* ФОТОЛЮМИНЕСЦЕНЦИЯ






ХЕМИЛЮМИНЕСЦЕНЦИЯ - это свечение, происходящее за счёт выделения энергии при некоторых химических реакциях.


ФОТОЛЮМИНЕСЦЕНЦИЯ - это явление свечения тела непосредственно под действием падающего на него излучения



При подготовке презентации использованы ресурсы интернета:

костёр+-+картинки# urlhash =5757898114734803683

http://go.mail.ru/search_images?tsg=l&q= полярные+сияния +-фото# urlhash =115382898120037314

http://go.mail.ru/search_images?tsg=l&q= флюоресценция+-+фото# urlhash =4067125506694357117

http://go.mail.ru/search_images?fr=spc&q= что%20называется%20флуоресценцией%20%3 F#urlhash =2632216883017076572

http://go.mail.ru/search_images?q=%20 флуоресценция%20и%20фосфоресценция%20-%20фото& fr = web#urlhash =6848376861429583508

Учебник физика-11, Г.Я Мякишев, Б.Б. Буховцев, В.М. Чаругин, Москва, «Просвещение», 2014г.


Слайд 2

Слайд 3

Виды излучений. В настоящее время мы знаем 6 видов излучения - гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение, инфракрасное излучение и радиоволны. В этой презентации мы рассмотрим каждое из этих излучений, а именно их свойства и применение.

Слайд 4

Радиоволны. Радиоволны - это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.). Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока. Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Радиоволны были открыты ещё в 19 веке, их наблюдал Герц в своих экспериментах, первые испытания прошли уже в 20 веке в Ленинграде.

Слайд 5

Свойства радиоволн. Свойства радиоволн позволяют им свободно проходить сквозь воздух или вакуум. Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. На этом свойстве основано применение электромагнитных волн в радиолокации. Главное свойство радиоволн заключаются в том, что они способны переносить через пространство энергию, излучаемую генератором электромагнитных колебаний. Колебания же возникают при изменении электрического поля.

Слайд 6

Применение радиоволн. Радиоволны, как средство для беспроводной передачи звуковой, видео и иной информации на достаточно значительные расстояния, приобрело популярность и широкую сферу использования. Именно радиоволны лежат в основе организации многих современных процессов, среди которых: радиовещание, телевидение, радиотелефонная связь, радиометеорология, радиолокация.

Слайд 7

Инфракрасное излучение. Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм). Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца. Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Слайд 8

Свойства инфракрасного излучения. Оптические свойства веществ (прозрачность, коэффициент отражения, преломления) в инфракрасной области спектра, как правило, значительно отличаются от тех же свойств в привычной для нас видимой области. У большинства металлов отражательная способность для инфракрасного излучения значительно больше, чем для видимого света, и возрастает с увеличением длины волны. Материалы, прозрачные для ИК-лучей и обладающие высокой способностью к их отражению, используются при создании ИК-приборов.

Слайд 9

Применение ИК-излучения. Инфракрасное излучение применяют в: медицине; дистанционном управлении; при покраске (для сушки лакокрасочных поверхностей); для стерилизации пищевых продуктов; как антикоррозийное средство (с целью предотвращения коррозии поверхностей, покрываемых лаком); проверка денежных знаков на подлинность; для обогрева помещения.

Слайд 10

Рентгеновское излучение. РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение с длиной волн 10−7—10−12 м. Открыто в 1895 г. нем. физиком В. К. Рентгеном (1845—1923). Испускается при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчатый спектр). Источниками являются: некоторые радиоактивные изотопы, рентгеновская трубка, ускорители и накопители электронов (синхротронное излучение). Рентгеновскоеизлучение Сириуса B, снимок получен спутником Чандра.

Слайд 11

Свойства рентгеновского излучения. Основные свойства рентгеновского излучения: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность, у некоторых веществ вызывает флюоресценцию.

Слайд 12

Применение рентгеновского излучения. При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (рентгенография и рентгеноскопия). Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией. В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК. При помощи рентгеновских лучей может быть определён химический состав вещества. В аэропортах активно применяются рентгено-телевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа.

Слайд 13

РИ активной Галактики.

Слайд 14

Оптическое излучение. Оптическое излучение - это свет в широком смысле слова, электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. Помимо воспринимаемого человеческим глазом видимого излучения, к этому виду излучений относятся инфракрасное излучение и ультрафиолетовое излучение. Параллельный термину "О. и." термин "свет" исторически имеет менее определенные спектральные границы - часто им обозначают не все оптические излучения, а лишь его видимый поддиапазон. Для оптических методов исследования характерно формирование направленных потоков излучения с помощью оптических систем, включающих линзы, зеркала, призмы оптические, дифракционные решётки и т.д.

Слайд 15

Свойства оптического излучения. Волновые свойства оптического излучения обусловливают явления дифракции света, интерференции света, поляризации света и др. В то же время ряд оптических явлений невозможно понять, не привлекая представления об оптическом излучении как о потоке быстрых частиц - фотонов. Эта двойственность природы. Оптическое излучение сближает его с иными объектами микромира и находит общее объяснение в квантовой механике. Скорость распространения оптического излучения в вакууме (скорость света)- около 3·108 м/с. В любой другой среде скорость оптического излучения меньше. Значение преломления показателя среды, определяемое отношением этих скоростей (в вакууме и среде), в общем случае неодинаково для разных длин волн оптического излучения, что приводит к дисперсии оптического излучения. Применение: В сельскохозяйственном производстве инфракрасное излучение используют в основном для обогрева молодняка животных и птицы, сушки и дезинсекции сельскохозяйственных продуктов (зерна, фруктов и т. д.), пастеризации молока, сушки лакокрасоч-ных и пропиточных покрытий.

Слайд 16

Ультрафиолетовое излучение. Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Слайд 17

Свойства ультрафиолетового излучения. Высокая химическая активность, невидимое, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза. Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Длина волны от 10 - 400 нм. Частота волн от 800*1012 - 3000*1013 Гц.

Слайд 18

Применение ультрафиолетового излучения. Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света. Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Обеззараживание ультрафиолетовым (УФ) излучением. Стерилизация воздуха и твёрдых поверхностей. Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Химический анализ, УФ-спектрометрия. УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.Ловля насекомых. В медицине (обеззараживание помещения).

Слайд 19

Слайд 20

Гамма-излучение. Гамма-излучение (гамма-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны < 5·10−3 нм и, вследствие этого слабо выраженными волновыми свойствами. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Слайд 21

Свойства гамма-излучения. Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Основные процессы, возникающие при прохождении гамма-излучения через вещество: фотоэффект - энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом, который становится ионизированным; эффект образования пар - гамма-квант в поле ядра превращается в электрон и позитрон; ядерный фотоэффект - при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.

Слайд 22

Применение гамма-излучения. Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами. Консервирование пищевых продуктов. Стерилизация медицинских материалов и оборудования. Лучевая терапия. Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов. Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Слайд 23

Спасибо за внимание!

Посмотреть все слайды